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Xénophon Krokidis, Stéphane Noury, and Bernard Silvi*

Laboratoire de Chimie Tharique, Uniersite Pierre et Marie Curie, 4 Place Jussieu,
75252 Paris Cedex, France

Receied: March 27, 1997; In Final Form: July 7, 1997

The topological analysis of the electron localization function (ELF) provides a convenient theoretical framework
to characterize chemical bonds. This method does not rely on the particular approximations that are made in
actual quantum chemical calculations of the electronic structure. In principle, it can be applied to exact
wave functions as well as to experimental electron densities. Introduction of a control space, such as a set
of reaction pathways, allows extension of the analysis to chemical reactions. The study of the bifurcations
occurring during such processes is of particular interest for their classification and their qualitative description.
This is achieved with the help of Refidhom’s catastrophe theory. The following examples are discussed:

the ammonia inversion, the breaking of the ethargd®ond, and the breaking of the dative bond ing8Hs.

The types of catastrophe and their unfolding have been determined for each of these processes. As by-
products, nonempirical definitions of covalent and dative bonds are proposed.

1. Introduction based on the electron density distribution. Particularly, it
h provides a clear demarcation between chemical and nonchemical

The theory of chemical reactivity mostly relies on an approac
Y vy y PP processes.

related to the energetics and to the dynamics of the reaction. . . . L
d y The topological description of the chemical bonding is rather

One of the main objectives is the prediction and understanding int of view in chemi hich i id d
of the kinetics from the analysis of the energy hypersurfaces, anew point of view in chemistry which is not yet widesprea

functions of the nuclear coordinates, related to the channelsm_the community. For this reason itis necessary to avoid any
connecting the reactants to the producs. The kinetic and misunderstanding and, more particularly, any confusion between

thermodynamical constants of the reaction are evaluated by athe concepts of the topological approach and those of the

statistical treatment. In this framework, the qualitative pieces star(]jdan_:l ones_.r In this rﬁsp%(_:t, the role .Of the vcf)cabu:]ary IS
of information are provided by the set of nuclear coordinates, Prédominant. To name the objects emerging out of our theory,

which defines a given point of a hypersurface, and by the we use mathematical (topological) terminology for nouns and

electronic state that labels the energy hypersurface. In this Way,Chem'C%l. W(.)rds for adjectives provided they do not introduce
it is possible to get some insight into the reaction mechanism. an\)/lvam guity. h hi bul
From a purely qualitative point of view, a chemical reaction e are aware that this new vocabulary represents an

can be defined as the changes in the chemical bonds of a syster@dditiogillvdimcu“y for: t?e. r?ager. FO(; éhifs.’ retison V;’ﬁ ha\;g |
of atoms occurring upon a change in the nuclear configuration. evoted two paragraphs 1o introduce and detine the mathematica

It is difficult to work from this definition, as the chemical bond words used in the topological theory of dynamical systems

is not an observable to which a numerical value can be assigned.Wh'Ch_ IS the mathema_mcal fou_ndatlon of tI_1e topological
This concept belongs to a system of representation settled byd€Scription of the chemical bonding and reactions.
chemists on the basis of experience. A nonempirical qualitative
study of a reaction, from the previously mentioned standpoint,
requires a mathematical model that associates a collection of 2.1. Topological Concepts.Consider a systen®j and let
mathematical objects, such as numbers or single points, to theM be themanifold of its internal states y;(t;x € RN; ¢, € W)
chemical representation of the system. Topological theories of € M are thestate variables of (%), which are solutions of a
the chemical borftf provide such mathematical structures. system ofn equations defined over a spae¥, the elements of
These theories are based on the topological analysis of thewhich arex = (xi, X, ...,Xn). The general expression of these
gradient field of well-defined local functions (which can be in equations is

principle evaluated either from experiments or from exact

2. Theory

guantum mechanics), which depend upon a set of external ay; azyj ay, 82y]-
i ini Flyacat = — X == ..; [OXg, ...] =0
parameters, such as the nuclear coordinates, defining the control il YirCosls Gt a2’ T g e f 1
space. ot X OXXm )
The bonding eolution theory (BET)outlined in this paper
intends to provide the conceptual tools necessary to perform a 1<i, j=n
precise and close description of chemical reactions within the
topological framework. Most of the basic ideas have been 1<Il, m=N
originally developed by Richard Bader and co-workers in their
study of the electron density properties. As it will be shown, l<=a=k

the choice of the electron localization function (ELF), rather i )
than the electron density to study chemical properties, allows In Which ¢, denotes thecontrol parameterswhich are the

one to overcome the limitations encountered in the approacheélements of the seW referred to as thecontrol spaceof
dimensionk. In the case of applications related to physics or

€ Abstract published ilAdvance ACS Abstract#yugust 15, 1997. chemistry such parameters may be related to external constraints
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TABLE 1: Nomenclature Used for Hyperbolic Critical
Points in R3: The Rank Is the Number of Nonzero
Characteristic Exponents, the Signature the Difference
between the Numbers of Positive and Negative Ones

type indexI (R3,r ) (rank, signature)
local maximum (attractor) 0 (33)
saddle point 1 (3+1)
saddle point 2 (3+1)
local minimum (repellor) 3 (3+3)

(i.e. electric or magnetic field, external pressure, temperature).
x and t may conveniently be regarded as space and time
coordinates.

When eq 1 involves neither integrals, space derivatives, nor
space dependence, it can be written as

Y 7, ) =0

——
F;(}/j,ca.t,ﬁ. ? .
Moreover if only first derivativesyi/dot appear in eq 2, it can
be written as

()

ay; fvec. 3
E - i(yjrcalt) ( )

This special system of equations is called dyaamical system
The right-hand side of eq 3 may be alternatively interpreted as
a vector fieldX(M,W,t) while an analogy with a velocity field

in M can be done for the left-hand side. Therefore, eq 3 appears

to be a kind of motion law in the space of the internal states of
(2). Integration of eq 3 with a given set of initial conditions
yields a unique solutiog(c,,t) which is atrajectoryin M. Any
trajectory begins and ends in the neighborhood of pointsl of
for which X(y®®¥eM) = 0. These points are thwitical points?
also calledsingular pointsor equilibrium points The eigen-
values of the matrix;;(y) = (3fi/dy;),—yo are thecharacteristic
exponentf X aty©®. A critical point is calledhyperbolicor
elementanyif none of its characteristic exponents has zero real
part; it is characterized by itadex 1(X,y®), which is the number

of positive eigenvalues (counting multiplicities) of kg matrix
defined above. The Poincarélopf theorem states thatM is
compact an has only isolated hyperbolic critical points, then
they fulfill the following relation:

> (1% = (M) @)

In eq 4, the sum runs over all critical points ¥f andy(M) is
the Euler characteristioof M. A critical point is either a local
maximum, a local minimum, or a saddle point. Table 1 reports
the type of hyperbolic critical points in the case of a real function
f(r): R®—R. For a given poinyo €M the limit sets ofyo(Cq,t)
for t — —o0 andt — +oo are referred to ag-limit andw-limit,
respectively. A critical point witH(X,ys)) = 0 is also called
an attractor, attractors are only-limits. The set of points
having a given attractor as-limit is called thebasin of this
attractor. The set of trajectories that have a given critical point
as ao-limit is called theunstable manifolaf this critical point,
whereas thetable manifolds defined as the set of trajectories
for which it is thew-limit. In the R9the dimension of the stable
manifold is equal to the indekX,y®); the dimension of the
unstable manifold ig — 1(X,y%).

If in eq 3 f; is time independent, the dynamical system is
said to beautonomous Moreover, in this casd; locally may
be the component of a force derived from paential function
V(y;;c). Thus the gradient vector field of a well-defined local
function V(y;;c,) is called agradient dynamical system

Krokidis et al.

ay(cy;t) Ve,
at oy,

(®)

The behavior of a dynamical system is determined by its
equilibria

ay(cy/ot=0

In the case of a gradient system, these are defined by the
equation

aVv(y;ic)ay; =0

2.2. Elementary Catastrophe Theory. Up to now, the
guantitiesc, have been implicitly considered as constants.
Elementary catastrophe theosyudies how the equilibrig(c,)
of a gradient system change as the control parametetsange
in the special case wheke= dim(W) < 5. In this context the
evolution of the equilibria can be studied by considering the
behavior of theHessiarmatrix Hij = dV/(Yi;Cq)/3Y; 9Y; Of V(Yk;Co).

If Hij(co)ly=y® = 0, then it is said that the critical point is
hyperbolic; in the other case it is callednhyperbolic The
configuration of the control parametec$ for which detH;
(c)ly=y» = O'is called thevifurcation point The set ofc, for
which the Hessian matrix of a given critical point is nonzero
defines thedomain of stabilityof the critical point. A small
perturbation of\/(yi(s);cg), brings the systen®) from a domain

of stability to another. If none of the critical points of the system
change, thenX) is located in adomain of structural stability
Thom’s theorerf states that in the neighborhood (yfshc(’;)
after a smooth change of the variables, the potential can be
written as

n

VIYiC,) = Uy, - YiC) + Y Ai(CY’ (6)
i 1

The symbok= means equal after a smooth change of variables.
In this equationu(ys, ..., ¥i;Co) is theuniversal unfoldingof the
singularity, it is a polynomial function of degree higher than 2
of a “canonical” form depending upon th&ariables with zero
eigenvalues] is called thecorank and thel;’s are then — |
nonzero eigenvalues. The unfolding contains all the information
about howv(y;c,) may change as the control parameters change.

Thom has classified these universal unfoldings according to
their corank and to the dimension of the control spabtealled
the codimension Thom’s classification is reported in Table 2.

2.3. Adaptation to Chemistry. The mathematical concepts
outlined above provide a suitable background to every science
that studies the evolution of a process located in a sysEm (
To do this, we just need a local, well-defined functiidy;c,)
describing the property involved in the process. This function
will play the role of V(y;c,) seen before.

In this section our method of analysis is outlined, and
therefore the functiori(y;c,) will be considered as given and
always well-behaved. As already mentioned, the aim of this
study is to provide information about elementary chemical
processes and the change in the bonding they involve. As we
consider the bonding as a local property of the matter, the
potential function should be a direct space function, and
therefore theg state variables considered in the previous sections
are the real space coordinatgsvhereas the, are the set of
nuclear coordinateR. The critical points, those points for
which Vf(r, R) = 0, and their connectivity will determine a
molecular graph which will be discussed in a further section.
Upon variation of the nuclear coordinates, the molecular
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TABLE 2: Thom’s Nomenclature of Elementary theory has been successfully applied on the one hand to
Catastrophes unimolecular reactions involving either isomerization or ring
codimen- co- breaking (see ref 6 and references therein) and on the other hand
name sion  rank universal unfolding to dissociative processes occurring in those systems possessing
fold 1 1 %@+ ux a non-nuclear attractdt. 12 In both cases the catastrophe theory
cusp 2 1 x4 ux+ ox provides the convenient mathematical framework to describe
swallow tail 3 1 x5+ ux®+ ox? + wx the evolution of the system. However in the most general case
hyperbolic umbilic 3 2 X+ ¥+ uxyt ox -+ wy of a bond dissociation, without a non-nuclear attractor, the study
Eultrigfﬂ;mblllc i’ i iﬁ 4__ ﬁﬁi L;S; jv%//x)zi ;’; +wy of the density doesnjt allow the identificat_ion of_ any change in
parabolic umbilic 4 2 3y + VA + W+ oy + wx+ ty the structure. Consider for example a diatomic molecule. In

this case, the control space parameter is simply the internuclear

structure evolves. Bond paths between atoms are created, othergistance. For any value of the internuclear distance there exists
destroyed. Along the reaction path, the system goes from onega (3,—1) critical point between the two attractors, and therefore
region of structural stability to another one, and this evolution the system is structurally stable over the whole domain of the
can be described in terms of bifurcation catastroplieshe control parameter. Thus usually nothing happens. An alterna-
sense of Ren&hom® As a first step toward a more complete tive topological approach based on the density has been
theory, we will only consider those chemical processes that proposed by Mezey and co-workeéfs26 who consider the
occur on a single BornOppenheimer energy surface when the change of the shape of bonding isosurfaces. This enables one
set of nuclear coordinates is varied. As already mentioned, ato recognize formal species along the path that characterize the
chemical reaction can be viewed as successive structural stabilitysteps of the reaction. However, this method relies on properties
domains, each corresponding to a given bonding state. In eachwhich are not able to provide a description of the bonding such
structural stability domain, the critical points are hyperbolic and as is done by the density Laplacian or by ELF.
their number fulfills the PoincareHopf theorem eq 4, in which 2.3.2. The Electron Localization FunctionOur study is
for finite and periodic chemical systems i, < 3, the Euler based on the BeckeEdgecomb¥ electron localization function
characteristic is 1 and 0, respectively. The transition from one (ELF) defined in eq 7, which is more appropriate to study
bonding state to another is achieved by a bifurcation catastrophebonding in molecules.
at which some of the critical points become nonhyperbolic, in
a such way that the Poincarélopf theorem is always fulfilled. 1
The latter assertion is easy to understand if we think thst n(r) = m )
always well-behaved and that the manifold of definitiorvef{r, h
R) remains the sam&Y, for any nuclear configuration. The
identification of the catastrophe will be done by studying the
behavior of the critical points® involved at the bifurcation
point R*, hereafter referred to as thoéfurcation state and by )
trying to set up the Taylor development f¢f, R) about ¢(), 1 ,  11Ve(r)l
R*) in one of the “canonical” forms of Table 2. This gives D(r) = _Z|V¢i(r)| I (8)
access to the unfolding of the catastrophe, which is a simple 25 8 p(r)
parametric expression of the local behavior, and therefore to
the dimension of the active control space which is the number
of parameters of the unfolding. 53

As we have to deal with calculations on chemical systems Di(r) = Cep(r) 9)
the problem of the choice of the method of calculations and
even of the basis set can be raised. For these reasons w®(r) has the physical meaning of the excess of local kinetic
introduce the term ofminimal reliable leel of calculationas energy density due to Pauli’s repulsithand Dy(r) is the
being the simplest level that gives a good description of the Thomas-Fermi kinetic energy density, which can be regarded
system. In a region of structural stability, the improvement of as a “renormalization” factor. In eq @¢ is the Fermi constant
the wave function induces a weak perturbation of the dynamical with valueCe = 2.871 au. The range of values®fs 0 < »
system which does not modify its phase portrait. The only effect < 1.
should be a displacement of the locations of the bifurcation states Where electrons are alone or form pairs of antiparallel spins,
in the space of the control parameters. A better calculation thanthe Pauli principle has little influence on their behavior and the
the minimal reliable one, therefore, doesn’t provide any change excess local kinetic energy has a low value, whereas at the
in the molecular graphs of the structurally stable states occurring boundaries between such regions the probability of finding
along the reaction path. The method outlined above provides, parallel spin electrons close together is rather high and the excess
in its spirit, a local model of reactive processes that is free from local kinetic energy has a large value.
any technical assumption made to calculate an approximative The Silvi-Savin’ approach of chemical bonding based on
wave function. Therefore, the evolution of the molecular graph the topological analysis of thgr) function achieves a partition
shape contains the underlying chemical information. of the molecular space into basins of attractors having a clear

2.3.1. Bader’'s Theory of Atoms in Moleculés.Bader’s chemical signification. These basins are either core basins
theory of atoms in moleculésthe local function investigated  organized around nuclei (with > 2) or valence basins in the
is the charge density(r). The attractors of the charge density remaining space. We will also make a distinction between the
gradient field are generally located on the nuclei. The unstable valence basins according to theynaptic ordero, that is by
manifolds of the (3;-1) critical points constitute the bond paths the number of core basins with which they share a common
that link the bonded centers to one another. Though this boundaryt® see Table 3. The molecular graph, built from the
approach provides a nonempirical description of the structure, #(r) gradient field critical points, provides a complete repre-
it has some weaknesses mainly due to the particular behaviorsentation of the bonding in a molecule accounting for the bonds,
of the charge density if one wants to describe a reaction. This the lone pairs, and their organization around the cores.

For a single-determinantal wave function built from Hartree
Fock or Kohr-Sham orbitals;

and
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TABLE 3: Nomenclature of Valence Basins: The
Expression between Parentheses Corresponds to the List of
the Core Basins Sharing a Boundary with the Valence Basin

synaptic order nomenclature symbol
0 asynaptic \%
1 monosynaptic V(Xi)
2 disynaptic V(X Y))
>3 polysynaptic V(X, Y, ...)
Considering now any chemical process, our method provides A

basically three levels of information.

Current Level. In this kind of description only the number  vem”
u of basins in each region of structural stability is considered. D
According to the variation of this numbemgrphic numbeér
between products and reactants three types of reaction are
possible; we propose calling theplyomorphic Au > 0),
tautomorphic Au = 0), and miomorphic 4« < 0). Tauto-
morphic processes are eithisosynapticif the basin synaptic BH3
order is not changed diffeosynaptimtherwise.

Medium Leel. Here the evolution of the complete molecular

R

"V(B,H)

and type of all the critical points.

Accurate Leel. In this case the universal unfolding involved
in the chemical process is determined.

The classification of the processes given above may be useful
to determine whether a process is or is not a chemical reaction.
Reactions involving only tautomorphic isosynaptic processes,
such as the dissociation of van der Waals complexes, are not
chemical reactions, whereas plyomorphic, miomorphic, and
tautomorphic diffeosynaptic processes characterize a chemical

reaction. C2Hs BH:NH3
2.4. Molecular Graph. The concept of a molecular graph

has been introduced by Bader. The molecular graph of the and BHNHs. The attractors are represented@ynd the exceptional

de_nSity is_the set of the unstable manifolds of the(8) critical . critical points of index 2 bya. Full lines correspond to index 1 critical
points which connect bonded atom attractors to each other. Thispeint unstable manifolds, dashed lines to trajectories linking critical

kind of molecular graph provides a complete description of the points of index 2 to attractors.

connectivity of critical points since attractors correspond to

single points, (3-1) saddle points to lines, (3;1) to rings, breaking of the B-N bond in BHNH3. The Gaussian 94
and (3,+3) to cages. In the case of the ELF functip(r) a softwaré” has been used to carry out the calculations. They
straightforward generalization of Bader's scheme is hamperedhave been performed with polarized split valence basis sets
by a great number of critical points and also by peculiar either at the DFT (Nkl BHsNH3) or CASSCF (CHCHg) levels.
connections that are possible between attractors. Therefore we 3.1. The Inversion of NHs. The ammonia inversion can
have been led to complement Bader’s rules for constructing be considered as a simple unimolecular chemical reaction in
molecular graphs, and so thé) molecular graphs are obtained  which the nitrogen lone pair is transferred from one half-space

Figure 1. Molecular graphs of N& CHs, BHs, NH; planar, G He,

according to the following recipe. to the other. The reaction coordinate is the an@le, (11/2) +
1. Attractors are represented by points and labeled accordingg, between theCsz axis of the molecule and the-NH bonds.
to the nomenclature given in Table 3. The initial equilibrium ground state geometry corresponds to
2. (3, —1) saddle points are represented by full lines that = —21.6, the final to¢ = +21.6’, and the planar geometry to
correspond to their unstable manifold ¢ = 0. The ammonia inversion is symmetrical with respect to

3. Exceptional (3;+1) saddle points, those linking several ¢ = 0, so only the interval of = -21.6’ to ¢ = +21.6 will
attractors to one (371) critical point, are represented by empty be explored. The evolution of the number and type of basins
triangles, and their connection with attractors by dashed lines. is represented in Figure 2A as a functiongof In terms of the

These rules have been applied to draw the molecular graphscurrent level of description, a plyomorphic step takes place for
of NH3, CHa, BHs, C; He, and NHBH3, represented in Figure ¢ = —15.2 which brings the system from the21.6° < ¢ <
1. In all cases except for N\f-hnd BH; only Bader's rules are —15.2 domain of structural stability (Figure 24y andp) to
necessary, so the numbers of vertices, edges, rings, and cagethe —15.2 < ¢ < +15.2 one (Figure 2Ay). Then forg¢ =
are identical to those of the critical points (in the case 06CH +15.2 we have a miomorphic step which brings the system
5,9, 7, 2, respectively). In Ngithe eight full line segments  into a third domain of structural stabilityH15.2 < ¢ <
correspond to the eight (371) critical points. To get the  +21.6°). The whole process of ammonia inversion is a
number of (3;+1), one has to consider the seven rings involving tautomorphic one. Table 4 reports the numbers of critical points
at most one dashed line and for the three{3) points the  of each type in the three successive bonding states.
cages which do not contain any attractors. Finally considering The symmetrical catastrophes occurringpat —15.2 and
the BH, the two particular (3#1) points give rise to two cages.  +15.2 are also shown in Figure 2B. They correspond to the
interconversion of two critical points, located in the center, of
index 2 and 0, respectively, which is accompanied by a rotation

As examples, we will successively consider the inversion of of three critical points of index 1 around the molecular axis,
ammonia, the breaking of the ethane-C bond, and the (Figure 2B, a and b). This corresponds in a first step to the

3. Examples
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A) (A)
o (a o b o ©
® £ o a,n °
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w<(} —~——a w= ~— w>0
w>0 w=0 w<0
(a) ® (®
(a) (B) (b) [e] A B — wandering point
A A 4 4 a<0 o=0 a0
A A * A
©
Figure 2. Representation of the ammonia inversion. In the upper part _“(0‘) (¢
of the figure (A) the ELF= 0.8 isosurfac® of ammonia shows the l."* [ ] F
domains associated with the localization attractors for different values \:""1 Bl - - S ) s o
of the anglef: left 6 = 70°, centerf = 74.8, right & = 80°. The » "-—-‘ 1 it
lower part of the figure (B) sketches the elliptic umbilic catastrophe in w W ® @ |
the xy plane perpendicular to th&s axis. This figure, presented here 1<0 0 0
in black and white, is available in color on the World Wide Web. Color - v - ke
code: magenta core, red= valence monosynaptic, greenvalence (a) 0]
disynaptic, blue= protonated valence disynaptic. The critical points . o 4 o
of index 0, 1, 2, and 3 are represented by@ha, A, andO symbols,

respectively.
. - . Figure 3. Representation of the ethane dissociation. (A and B) Core
TABLE 4: Number of Critical Points for the ) _ rearrangement: (A) elliptic umbilic catastrophe in thg plane
Th&eeh-D(F))m_aln, :I'Wﬁ-Stfe_lp_)hProcess of the Ammonia Inversion perpendicular to the reaction path, (B) fold catastrophe, (C) dual cusp
and the Poincare-Hop eorem catastrophe corresponding to the bond breaking. This figure, presented

domain of here in black and white, is available in color on the World Wide Web.
structural stability 1=3 =2 |I=1 1=0 P-H )
680 <0 <748 3 7 P 5 1 3.2.. The Brgaklng of the Ethang cC Bond. The
74.9 < < 105.2 3 6 8 6 1 breaking of a single covalent bond is a typical plyomorph
105.2 < 0 < 111.6 3 7 8 5 1 chemical process and can be illustrated by the case of ethane.

appearance of a second monosynaptic basin (plyomorphic step,The reaction coordinate is the-C internuclear distandg. The

see Figure 2Ay) and in a second step to the annihilation of dissociation involves three domains of structural stability

the first one (miomorphic step). The local behavioner) in separated by two bifurcation processes. The first step is a
the neighborhood of the critical points involved= 0,y = 0 tautomorphic one and rearranges the valence basins around the

z=-1.0)for¢ = —15.2 and k= 0,y = 0, z= +1.0) for¢ carbon cores. Itis composed of an elliptic umbilic (Figure 3A,

= +15.2 is given, after a translation to the origin and a smooth & Figure 3A, c), withw = R — RcandR, ~ 1.83 A, followed
change of variables by the unfolding: by three simultaneous fold catastrophes, Figure 2B, described

by the unfolding below:
n(y;urw) =3¢ — 3xy? + WO + YA + ux+ oy (10)

. 3
These two catastrophes are elliptic umbilics in Thom'’s clas- n(xe) =X+ ax (11)
sification!%!® The unfolding above contains three control for whicha = R — R, andR. = 1.85 A andx is the direction
parametersy, v, w) and two space variables, () also called  joining the critical points of index 2 and 3, which give rise to
in general variables of behavior in catastrophe thédrifqua- 3 wandering point. The second step is a plyomorphic one and
tion 10 provides a local description of the behavior of the igentified as a dual-cusp catastrogBayhich splits the G-C
dynamical systenV,y(r,¢). The variables of behavior are  pond disynaptic attractor (Figure 3@, and Figure 3C, a) into
generalized coordinates. Those retained in the unfolding aretyo monosynaptic attractors and a saddle point of index 1
those for which the characteristic exponents (the Hessian matrix(gigure 3C,y, and Figure 3C, b). This step characterizes the
eigenvalues for gradient dynamical systems) of the critical point ethane dissociation. Its unfolding is given by
change of sign. In the actual case of the ammonia inversion,
andy are the Cartesian coordinates in a plane perpendicular to n(xu,) = —(¢ + wé + vx) (12)
the C; axis. The parametew is identified with the umbrella
opening anglep and is of the formt(¢.— ¢), ¢ denoting the In the actual case = 0, u = R; — R, andx is the reaction path
bifurcation value. These ag. = —15.2 and ¢, = +15.2, direction. This step increases the number of basins by 1, as
for the first and second catastrophes, respectively. The param-ethane becomes a biradical. The bifurcation state is located at
etersu and v account for distorsion from th€s, point group R. = 3.34 A, a value which is close to the critical configuration
symmetry of the molecule. When thBs, symmetry is as defined by Bunker and Panttentifi° (i.e. the value of the
conserved along the reaction pathand v are equal to zero.  reaction coordinate that minimizes the number of accessible
During the umbrella opening the population of the monosynaptic internal states). In this region, the energy difference, with
basind® (i.e. the one-electron density integrated over these respect to the fully dissociated species, is on the order of 10 kJ
basins) increases from 2420 2.62, whereas the total mol~1.21
population of the NH disynaptic basins decreases fromeb.76  3.3. The Breaking of the B-N Bond in BH3NH3. The
to 5.2%, indicating an appreciable contribution of these latter last example is the breaking of the—BIl dative bond in
basins to lone pair transfer. BH3NH;.  This reaction is an example of a tautomorphic
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is in progress to extend this approach to cases in which some
(&) y of the control space parameters are discrete (for instance the
@ ) ® label of the electronic state) in order to be able to treat in a
wandering point . . . . . .
consistent fashion reactions involving different channels and
a0 a=0 a<0 different energy hypersurfaces.
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