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The topological analysis of the electron localization function (ELF) provides a convenient theoretical framework
to characterize chemical bonds. This method does not rely on the particular approximations that are made in
actual quantum chemical calculations of the electronic structure. In principle, it can be applied to exact
wave functions as well as to experimental electron densities. Introduction of a control space, such as a set
of reaction pathways, allows extension of the analysis to chemical reactions. The study of the bifurcations
occurring during such processes is of particular interest for their classification and their qualitative description.
This is achieved with the help of Rene´ Thom’s catastrophe theory. The following examples are discussed:
the ammonia inversion, the breaking of the ethane C-C bond, and the breaking of the dative bond in NH3BH3.
The types of catastrophe and their unfolding have been determined for each of these processes. As by-
products, nonempirical definitions of covalent and dative bonds are proposed.

1. Introduction

The theory of chemical reactivity mostly relies on an approach
related to the energetics and to the dynamics of the reaction.
One of the main objectives is the prediction and understanding
of the kinetics from the analysis of the energy hypersurfaces,
functions of the nuclear coordinates, related to the channels
connecting the reactants to the products.1-5 The kinetic and
thermodynamical constants of the reaction are evaluated by a
statistical treatment. In this framework, the qualitative pieces
of information are provided by the set of nuclear coordinates,
which defines a given point of a hypersurface, and by the
electronic state that labels the energy hypersurface. In this way,
it is possible to get some insight into the reaction mechanism.
From a purely qualitative point of view, a chemical reaction
can be defined as the changes in the chemical bonds of a system
of atoms occurring upon a change in the nuclear configuration.
It is difficult to work from this definition, as the chemical bond
is not an observable to which a numerical value can be assigned.
This concept belongs to a system of representation settled by
chemists on the basis of experience. A nonempirical qualitative
study of a reaction, from the previously mentioned standpoint,
requires a mathematical model that associates a collection of
mathematical objects, such as numbers or single points, to the
chemical representation of the system. Topological theories of
the chemical bond6,7 provide such mathematical structures.
These theories are based on the topological analysis of the
gradient field of well-defined local functions (which can be in
principle evaluated either from experiments or from exact
quantum mechanics), which depend upon a set of external
parameters, such as the nuclear coordinates, defining the control
space.
The bonding eVolution theory (BET)outlined in this paper

intends to provide the conceptual tools necessary to perform a
precise and close description of chemical reactions within the
topological framework. Most of the basic ideas have been
originally developed by Richard Bader and co-workers in their
study of the electron density properties. As it will be shown,
the choice of the electron localization function (ELF), rather
than the electron density to study chemical properties, allows
one to overcome the limitations encountered in the approach

based on the electron density distribution. Particularly, it
provides a clear demarcation between chemical and nonchemical
processes.
The topological description of the chemical bonding is rather

a new point of view in chemistry which is not yet widespread
in the community. For this reason it is necessary to avoid any
misunderstanding and, more particularly, any confusion between
the concepts of the topological approach and those of the
standard ones. In this respect, the role of the vocabulary is
predominant. To name the objects emerging out of our theory,
we use mathematical (topological) terminology for nouns and
chemical words for adjectives provided they do not introduce
any ambiguity.
We are aware that this new vocabulary represents an

additional difficulty for the reader. For this reason we have
devoted two paragraphs to introduce and define the mathematical
words used in the topological theory of dynamical systems
which is the mathematical foundation of the topological
description of the chemical bonding and reactions.

2. Theory

2.1. Topological Concepts.Consider a system (Σ) and let
M be themanifoldof its internal states. yj(t;x ∈ RN; cR ∈ W)
∈ M are thestateVariables of (Σ), which are solutions of a
system ofn equations defined over a spaceRN, the elements of
which arex ) (x1, x2, ..., xN). The general expression of these
equations is

in which cR denotes thecontrol parameterswhich are the
elements of the setW referred to as thecontrol spaceof
dimensionk. In the case of applications related to physics or
chemistry such parameters may be related to external constraintsX Abstract published inAdVance ACS Abstracts,August 15, 1997.
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(i.e. electric or magnetic field, external pressure, temperature).
x and t may conveniently be regarded as space and time
coordinates.
When eq 1 involves neither integrals, space derivatives, nor

space dependence, it can be written as

Moreover if only first derivatives∂yi/∂t appear in eq 2, it can
be written as

This special system of equations is called thedynamical system.
The right-hand side of eq 3 may be alternatively interpreted as
a vector fieldX(M,W,t) while an analogy with a velocity field
inM can be done for the left-hand side. Therefore, eq 3 appears
to be a kind of motion law in the space of the internal states of
(Σ). Integration of eq 3 with a given set of initial conditions
yields a unique solutiony(cR,t) which is atrajectory in M. Any
trajectory begins and ends in the neighborhood of points ofM
for whichX(y(s)∈M) ) 0. These points are thecritical points,8

also calledsingular pointsor equilibrium points. The eigen-
values of the matrixHij(y(s)) ) (∂fi/∂yj)y)y(s) are thecharacteristic
exponentsof X at y(s). A critical point is calledhyperbolicor
elementaryif none of its characteristic exponents has zero real
part; it is characterized by itsindex, I(X,y(s)), which is the number
of positive eigenvalues (counting multiplicities) of itsHij matrix
defined above. The Poincare´-Hopf theorem states that ifM is
compact andX has only isolated hyperbolic critical points, then
they fulfill the following relation:

In eq 4, the sum runs over all critical points ofX, andø(M) is
theEuler characteristicof M. A critical point is either a local
maximum, a local minimum, or a saddle point. Table 1 reports
the type of hyperbolic critical points in the case of a real function
f(r ): R3 f R. For a given pointy0 ∈M the limit sets ofy0(cR,t)
for t f -∞ andt f +∞ are referred to asR-limit andω-limit,
respectively. A critical point withI(X,y(s)) ) 0 is also called
an attractor, attractors are onlyω-limits. The set of points
having a given attractor asω-limit is called thebasinof this
attractor. The set of trajectories that have a given critical point
as aR-limit is called theunstable manifoldof this critical point,
whereas thestable manifoldis defined as the set of trajectories
for which it is theω-limit. In theRq the dimension of the stable
manifold is equal to the indexI(X,y(s)); the dimension of the
unstable manifold isq - I(X,y(s)).
If in eq 3 fi is time independent, the dynamical system is

said to beautonomous. Moreover, in this case,fi locally may
be the component of a force derived from thepotential function
V(yj;cR). Thus the gradient vector field of a well-defined local
functionV(yj;cR) is called agradient dynamical system.

The behavior of a dynamical system is determined by its
equilibria

In the case of a gradient system, these are defined by the
equation

2.2. Elementary Catastrophe Theory. Up to now, the
quantitiescR have been implicitly considered as constants.
Elementary catastrophe theorystudies how the equilibriayi(cR)
of a gradient system change as the control parameterscR change
in the special case wherek ) dim(W) e 5. In this context the
evolution of the equilibria can be studied by considering the
behavior of theHessianmatrixHij ) ∂V(yk;cR)/∂yi ∂yj of V(yk;cR).
If Hij(cR)|y)y(s) * 0, then it is said that the critical point is
hyperbolic; in the other case it is callednonhyperbolic. The
configuration of the control parametersc*R for which detHij
(c*R)|y)y(s) ) 0 is called thebifurcation point. The set ofcR for
which the Hessian matrix of a given critical point is nonzero
defines thedomain of stabilityof the critical point. A small
perturbation ofV(yi

(s);c*R), brings the system (Σ) from a domain
of stability to another. If none of the critical points of the system
change, then (Σ) is located in adomain of structural stability.
Thom’s theorem10 states that in the neighborhood of (y(s);c*R)
after a smooth change of the variables, the potential can be
written as1

The symbolz means equal after a smooth change of variables.
In this equation,u(y1, ...,yl;cR) is theuniVersal unfoldingof the
singularity, it is a polynomial function of degree higher than 2
of a “canonical” form depending upon thel variables with zero
eigenvalues,l is called thecorank, and theλi’s are then - l
nonzero eigenvalues. The unfolding contains all the information
about howV(y;cR) may change as the control parameters change.
Thom has classified these universal unfoldings according to

their corank and to the dimension of the control spaceWcalled
thecodimension. Thom’s classification is reported in Table 2.
2.3. Adaptation to Chemistry. The mathematical concepts

outlined above provide a suitable background to every science
that studies the evolution of a process located in a system (Σ).
To do this, we just need a local, well-defined functionf(y;cR)
describing the property involved in the process. This function
will play the role ofV(y;cR) seen before.
In this section our method of analysis is outlined, and

therefore the functionf(y;cR) will be considered as given and
always well-behaved. As already mentioned, the aim of this
study is to provide information about elementary chemical
processes and the change in the bonding they involve. As we
consider the bonding as a local property of the matter, the
potential function should be a direct space function, and
therefore theyj state variables considered in the previous sections
are the real space coordinatesr , whereas thecR are the set of
nuclear coordinatesR. The critical points, those points for
which ∇rf(r , R) ) 0, and their connectivity will determine a
molecular graph which will be discussed in a further section.
Upon variation of the nuclear coordinates, the molecular

TABLE 1: Nomenclature Used for Hyperbolic Critical
Points in R3: The Rank Is the Number of Nonzero
Characteristic Exponents, the Signature the Difference
between the Numbers of Positive and Negative Ones

type indexI(R3,r (s)) (rank, signature)

local maximum (attractor) 0 (3,-3)
saddle point 1 (3,-1)
saddle point 2 (3,+1)
local minimum (repellor) 3 (3,+3)
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structure evolves. Bond paths between atoms are created, others
destroyed. Along the reaction path, the system goes from one
region of structural stability to another one, and this evolution
can be described in terms of bifurcation catastrophes9 in the
sense of Rene´ Thom.10 As a first step toward a more complete
theory, we will only consider those chemical processes that
occur on a single Born-Oppenheimer energy surface when the
set of nuclear coordinates is varied. As already mentioned, a
chemical reaction can be viewed as successive structural stability
domains, each corresponding to a given bonding state. In each
structural stability domain, the critical points are hyperbolic and
their number fulfills the Poincare´-Hopf theorem eq 4, in which
for finite and periodic chemical systems in Rq, qe 3, the Euler
characteristic is 1 and 0, respectively. The transition from one
bonding state to another is achieved by a bifurcation catastrophe
at which some of the critical points become nonhyperbolic, in
a such way that the Poincare´-Hopf theorem is always fulfilled.
The latter assertion is easy to understand if we think thatf is
always well-behaved and that the manifold of definition of∇rf(r ,
R) remains the same,Rq, for any nuclear configuration. The
identification of the catastrophe will be done by studying the
behavior of the critical pointsr (s) involved at the bifurcation
pointR* , hereafter referred to as thebifurcation state, and by
trying to set up the Taylor development off(r , R) about (r (s),
R* ) in one of the “canonical” forms of Table 2. This gives
access to the unfolding of the catastrophe, which is a simple
parametric expression of the local behavior, and therefore to
the dimension of the active control space which is the number
of parameters of the unfolding.
As we have to deal with calculations on chemical systems

the problem of the choice of the method of calculations and
even of the basis set can be raised. For these reasons we
introduce the term ofminimal reliable leVel of calculationas
being the simplest level that gives a good description of the
system. In a region of structural stability, the improvement of
the wave function induces a weak perturbation of the dynamical
system which does not modify its phase portrait. The only effect
should be a displacement of the locations of the bifurcation states
in the space of the control parameters. A better calculation than
the minimal reliable one, therefore, doesn’t provide any change
in the molecular graphs of the structurally stable states occurring
along the reaction path. The method outlined above provides,
in its spirit, a local model of reactive processes that is free from
any technical assumption made to calculate an approximative
wave function. Therefore, the evolution of the molecular graph
shape contains the underlying chemical information.
2.3.1. Bader’s Theory of Atoms in Molecules.In Bader’s

theory of atoms in molecules,6 the local function investigated
is the charge densityF(r ). The attractors of the charge density
gradient field are generally located on the nuclei. The unstable
manifolds of the (3,-1) critical points constitute the bond paths
that link the bonded centers to one another. Though this
approach provides a nonempirical description of the structure,
it has some weaknesses mainly due to the particular behavior
of the charge density if one wants to describe a reaction. This

theory has been successfully applied on the one hand to
unimolecular reactions involving either isomerization or ring
breaking (see ref 6 and references therein) and on the other hand
to dissociative processes occurring in those systems possessing
a non-nuclear attractor.11-13 In both cases the catastrophe theory
provides the convenient mathematical framework to describe
the evolution of the system. However in the most general case
of a bond dissociation, without a non-nuclear attractor, the study
of the density doesn’t allow the identification of any change in
the structure. Consider for example a diatomic molecule. In
this case, the control space parameter is simply the internuclear
distance. For any value of the internuclear distance there exists
a (3,-1) critical point between the two attractors, and therefore
the system is structurally stable over the whole domain of the
control parameter. Thus usually nothing happens. An alterna-
tive topological approach based on the density has been
proposed by Mezey and co-workers,23-26 who consider the
change of the shape of bonding isosurfaces. This enables one
to recognize formal species along the path that characterize the
steps of the reaction. However, this method relies on properties
which are not able to provide a description of the bonding such
as is done by the density Laplacian or by ELF.
2.3.2. The Electron Localization Function.Our study is

based on the Becke-Edgecombe14 electron localization function
(ELF) defined in eq 7, which is more appropriate to study
bonding in molecules.

For a single-determinantal wave function built from Hartree-
Fock or Kohn-Sham orbitalsφi

and

D(r ) has the physical meaning of the excess of local kinetic
energy density due to Pauli’s repulsion,15 and Dh(r ) is the
Thomas-Fermi kinetic energy density, which can be regarded
as a “renormalization” factor. In eq 9,CF is the Fermi constant
with valueCF ) 2.871 au. The range of values ofη is 0e η
e 1.
Where electrons are alone or form pairs of antiparallel spins,

the Pauli principle has little influence on their behavior and the
excess local kinetic energy has a low value, whereas at the
boundaries between such regions the probability of finding
parallel spin electrons close together is rather high and the excess
local kinetic energy has a large value.
The Silvi-Savin7 approach of chemical bonding based on

the topological analysis of theη(r ) function achieves a partition
of the molecular space into basins of attractors having a clear
chemical signification. These basins are either core basins
organized around nuclei (withZ > 2) or valence basins in the
remaining space. We will also make a distinction between the
valence basins according to theirsynaptic orderσ, that is by
the number of core basins with which they share a common
boundary;16 see Table 3. The molecular graph, built from the
η(r ) gradient field critical points, provides a complete repre-
sentation of the bonding in a molecule accounting for the bonds,
the lone pairs, and their organization around the cores.

TABLE 2: Thom’s Nomenclature of Elementary
Catastrophes

name
codimen-
sion

co-
rank universal unfolding

fold 1 1 x3 + ux
cusp 2 1 x4+ ux2 + Vx
swallow tail 3 1 x5 + ux3 + Vx2 + wx
hyperbolic umbilic 3 2 x3 + y3 + uxy+ Vx+ wy
elliptic umbilic 3 2 x3 - xy2 + u(x2 + y2) + Vx+ wy
butterfly 4 1 x6 + ux4 + Vx3 + wx2 + tx
parabolic umbilic 4 2 x2y+ y4 + ux2 + Vy2 + wx+ ty

η(r ) ) 1

1+ (D(r )/Dh(r ))
2

(7)
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2
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Considering now any chemical process, our method provides
basically three levels of information.
Current LeVel. In this kind of description only the number

µ of basins in each region of structural stability is considered.
According to the variation of this number (morphic number)
between products and reactants three types of reaction are
possible; we propose calling themplyomorphic (∆µ > 0),
tautomorphic (∆µ ) 0), and miomorphic (∆µ < 0). Tauto-
morphic processes are eitherisosynapticif the basin synaptic
order is not changed ordiffeosynapticotherwise.
Medium LeVel. Here the evolution of the complete molecular

graph is considered, which means the changes of the number
and type of all the critical points.
Accurate LeVel. In this case the universal unfolding involved

in the chemical process is determined.
The classification of the processes given above may be useful

to determine whether a process is or is not a chemical reaction.
Reactions involving only tautomorphic isosynaptic processes,
such as the dissociation of van der Waals complexes, are not
chemical reactions, whereas plyomorphic, miomorphic, and
tautomorphic diffeosynaptic processes characterize a chemical
reaction.
2.4. Molecular Graph. The concept of a molecular graph

has been introduced by Bader. The molecular graph of the
density is the set of the unstable manifolds of the (3,-1) critical
points which connect bonded atom attractors to each other. This
kind of molecular graph provides a complete description of the
connectivity of critical points since attractors correspond to
single points, (3,-1) saddle points to lines, (3,+1) to rings,
and (3,+3) to cages. In the case of the ELF functionη(r ) a
straightforward generalization of Bader’s scheme is hampered
by a great number of critical points and also by peculiar
connections that are possible between attractors. Therefore we
have been led to complement Bader’s rules for constructing
molecular graphs, and so theη(r ) molecular graphs are obtained
according to the following recipe.
1. Attractors are represented by points and labeled according

to the nomenclature given in Table 3.
2. (3, -1) saddle points are represented by full lines that

correspond to their unstable manifold
3. Exceptional (3,+1) saddle points, those linking several

attractors to one (3,-1) critical point, are represented by empty
triangles, and their connection with attractors by dashed lines.
These rules have been applied to draw the molecular graphs

of NH3, CH3, BH3, C2 H6, and NH3BH3, represented in Figure
1. In all cases except for NH3 and BH3 only Bader’s rules are
necessary, so the numbers of vertices, edges, rings, and cages
are identical to those of the critical points (in the case of CH3,
5, 9, 7, 2, respectively). In NH3, the eight full line segments
correspond to the eight (3,-1) critical points. To get the
number of (3,+1), one has to consider the seven rings involving
at most one dashed line and for the three (3,+3) points the
cages which do not contain any attractors. Finally considering
the BH3, the two particular (3,+1) points give rise to two cages.

3. Examples

As examples, we will successively consider the inversion of
ammonia, the breaking of the ethane C-C bond, and the

breaking of the B-N bond in BH3NH3. The Gaussian 94
software17 has been used to carry out the calculations. They
have been performed with polarized split valence basis sets
either at the DFT (NH3, BH3NH3) or CASSCF (CH3CH3) levels.
3.1. The Inversion of NH3. The ammonia inversion can

be considered as a simple unimolecular chemical reaction in
which the nitrogen lone pair is transferred from one half-space
to the other. The reaction coordinate is the angle,θ ) (π/2)+
φ, between theC3 axis of the molecule and the N-H bonds.
The initial equilibrium ground state geometry corresponds toφ

) -21.6°, the final toφ ) +21.6°, and the planar geometry to
φ ) 0. The ammonia inversion is symmetrical with respect to
φ ) 0, so only the interval ofφ ) -21.6° to φ ) +21.6° will
be explored. The evolution of the number and type of basins
is represented in Figure 2A as a function ofφ. In terms of the
current level of description, a plyomorphic step takes place for
φ ) -15.2° which brings the system from the-21.6° e φ <
-15.2° domain of structural stability (Figure 2A,R andâ) to
the-15.2° < φ < +15.2° one (Figure 2A,γ). Then forφ )
+15.2° we have a miomorphic step which brings the system
into a third domain of structural stability (+15.2° < φ e
+21.6°). The whole process of ammonia inversion is a
tautomorphic one. Table 4 reports the numbers of critical points
of each type in the three successive bonding states.
The symmetrical catastrophes occurring atφ ) -15.2° and

+15.2° are also shown in Figure 2B. They correspond to the
interconversion of two critical points, located in the center, of
index 2 and 0, respectively, which is accompanied by a rotation
of three critical points of index 1 around the molecular axis,
(Figure 2B, a and b). This corresponds in a first step to the

TABLE 3: Nomenclature of Valence Basins: The
Expression between Parentheses Corresponds to the List of
the Core Basins Sharing a Boundary with the Valence Basin

synaptic order nomenclature symbol

0 asynaptic V
1 monosynaptic V(Xi)
2 disynaptic V(Xi, Yj)

g3 polysynaptic V(Xi, Yj, ...)

Figure 1. Molecular graphs of NH3, CH3, BH3, NH3 planar, C2 H6,
and BH3NH3. The attractors are represented byb and the exceptional
critical points of index 2 by4. Full lines correspond to index 1 critical
point unstable manifolds, dashed lines to trajectories linking critical
points of index 2 to attractors.
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appearance of a second monosynaptic basin (plyomorphic step,
see Figure 2A,γ) and in a second step to the annihilation of
the first one (miomorphic step). The local behavior ofη(r ) in
the neighborhood of the critical points involved (x ) 0, y ) 0,
z) -1.0) forφ ) -15.2° and (x ) 0, y ) 0, z) +1.0) forφ
) +15.2° is given, after a translation to the origin and a smooth
change of variables by the unfolding:

These two catastrophes are elliptic umbilics in Thom’s clas-
sification.10,18 The unfolding above contains three control
parameters (u, V, w) and two space variables (x, y) also called
in general variables of behavior in catastrophe theory.18 Equa-
tion 10 provides a local description of the behavior of the
dynamical system∇rη(r ,φ). The variables of behavior are
generalized coordinates. Those retained in the unfolding are
those for which the characteristic exponents (the Hessian matrix
eigenvalues for gradient dynamical systems) of the critical point
change of sign. In the actual case of the ammonia inversion,x
andy are the Cartesian coordinates in a plane perpendicular to
theC3 axis. The parameterw is identified with the umbrella
opening angleφ and is of the form((φc- φ), φc denoting the
bifurcation value. These areφc ) -15.2° andφc ) +15.2°,
for the first and second catastrophes, respectively. The param-
etersu andV account for distorsion from theC3V point group
symmetry of the molecule. When theD3h symmetry is
conserved along the reaction path,u andV are equal to zero.
During the umbrella opening the population of the monosynaptic
basins16 (i.e. the one-electron density integrated over these
basins) increases from 2.12e to 2.62e, whereas the total
population of the NH disynaptic basins decreases from 5.76e
to 5.25e, indicating an appreciable contribution of these latter
basins to lone pair transfer.

3.2. The Breaking of the Ethane C-C Bond. The
breaking of a single covalent bond is a typical plyomorph
chemical process and can be illustrated by the case of ethane.
The reaction coordinate is the C-C internuclear distanceR. The
dissociation involves three domains of structural stability
separated by two bifurcation processes. The first step is a
tautomorphic one and rearranges the valence basins around the
carbon cores. It is composed of an elliptic umbilic (Figure 3A,
af Figure 3A, c), withw) R- Rc andRc≈ 1.83 Å, followed
by three simultaneous fold catastrophes, Figure 2B, described
by the unfolding below:

for which R ) R- Rc andRc ) 1.85 Å andx is the direction
joining the critical points of index 2 and 3, which give rise to
a wandering point. The second step is a plyomorphic one and
identified as a dual-cusp catastrophe,18 which splits the C-C
bond disynaptic attractor (Figure 3C,R, and Figure 3C, a) into
two monosynaptic attractors and a saddle point of index 1
(Figure 3C,γ, and Figure 3C, b). This step characterizes the
ethane dissociation. Its unfolding is given by

In the actual caseV ) 0, u ) Rc - R, andx is the reaction path
direction. This step increases the number of basins by 1, as
ethane becomes a biradical. The bifurcation state is located at
Rc ) 3.34 Å, a value which is close to the critical configuration
as defined by Bunker and Panttengill19,20 (i.e. the value of the
reaction coordinate that minimizes the number of accessible
internal states). In this region, the energy difference, with
respect to the fully dissociated species, is on the order of 10 kJ
mol-1.21

3.3. The Breaking of the B-N Bond in BH3NH3. The
last example is the breaking of the B-N dative bond in
BH3NH3. This reaction is an example of a tautomorphic

Figure 2. Representation of the ammonia inversion. In the upper part
of the figure (A) the ELF) 0.8 isosurface22 of ammonia shows the
domains associated with the localization attractors for different values
of the angleθ: left θ ) 70°, centerθ ) 74.8°, right θ ) 80°. The
lower part of the figure (B) sketches the elliptic umbilic catastrophe in
the xy plane perpendicular to theC3 axis. This figure, presented here
in black and white, is available in color on the World Wide Web. Color
code: magenta) core, red) valence monosynaptic, green) valence
disynaptic, blue) protonated valence disynaptic. The critical points
of index 0, 1, 2, and 3 are represented by theb, 2, 4, andO symbols,
respectively.

TABLE 4: Number of Critical Points for the
Three-Domain, Two-Step Process of the Ammonia Inversion
and the Poincaré-Hopf Theorem

domain of
structural stability I ) 3 I ) 2 I ) 1 I ) 0 P-H

68.4° e θ < 74.8° 3 7 8 5 1
74.8° < θ < 105.2° 3 6 8 6 1
105.2° < θ e 111.6° 3 7 8 5 1

η(x,y;u,V,w) ) x3 - 3xy2 + w(x2 + y2) + ux+ Vy (10)

Figure 3. Representation of the ethane dissociation. (A and B) Core
rearrangement: (A) elliptic umbilic catastrophe in thexy plane
perpendicular to the reaction path, (B) fold catastrophe, (C) dual cusp
catastrophe corresponding to the bond breaking. This figure, presented
here in black and white, is available in color on the World Wide Web.

η(x;R) ) x3 + Rx (11)

η(x;u,V) ) -(x4 + ux2 + Vx) (12)
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chemical process, the number of basins is constant, and the main
feature is that the disynaptic basin of the B-N bond becomes
monosynaptic. This is a two-step process. In the equilibrium
nuclear configuration, the separatrix of the boron core basin
and of the B-N disynaptic one is a single critical point of index
3, a repellor. The first step, atR) 2.87 Å, is a fold catastrophe
in which a wandering point located in the disynaptic basin and
in the neighborhood of the separatrix gives rise to a second
repellor and to a saddle point of index 2, as shown of Figure
4A. This step transforms the disynaptic basin into a mono-
synaptic one. The second step, atRc ) 3.83 Å, is an elliptic
umbilic (Figure 4B) followed by three simultaneous folds
(Figure 4C), which completes the rearrangement of the hydrogen
basins around the boron core.

4. Conclusions

The topological analysis sketched above provides a precise
description of the evolution of the bonding associated with a
chemical reaction. The method exhibits different steps, such
as valence basin rearrangements, which cannot always be seen
by other techniques, and emphasizes the importance of the
topological properties of the space (i.e. the Poincare´-Hopf
theorem). The unfolding of the catastrophes gives access to
the dimension of the active control space. In the case of reaction
for which the energy hypersurface has no saddle point defining
the transition state, it is nevertheless possible to locate a
bifurcation state on the basis of bonding criteria at the turning
point corresponding to the catastrophe that breaks or forms a
bond. In the previous static presentation of this approach,7 no
distinction was made possible between covalent and dative
bonds. Both were referred to as belonging to the shared
interaction. The analysis of bond breaking presented herein
allows a clear characterization: in the covalent case, the dual-
cusp catastrophe involves an attractor; in the dative one the fold
catastrophe gives rise to a saddle point and a new repellor. Work

is in progress to extend this approach to cases in which some
of the control space parameters are discrete (for instance the
label of the electronic state) in order to be able to treat in a
consistent fashion reactions involving different channels and
different energy hypersurfaces.
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Paris, 1972.
(11) Cioslowski, J.J. Phys. Chem.1990, 94, 5496.
(12) Cooper, D. L.Nature1990, 346, 789.
(13) Bersuker, G. I.; Peng, C.; Boggs, J. E.J. Phys. Chem.1993, 97,

9323.
(14) Becke, A. D.; Edgecombe, K. E.J. Chem. Phys.1990, 92, 5397.
(15) Savin, A.; Jepsen, J.; Andersen, O. K.; Preuss, H.; von Schnering,

H. G. Angew. Chem., Int. Ed. Engl.1992, 31, 187.
(16) Savin, A.; Silvi B.; Colonna, F.Can. J. Chem.1986, 74, 1088.
(17) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;

Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G.
A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski,
V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.;
Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.;
Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.,
Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-
Gordon, M.; Gonzalez C.; Pople, J. A.GAUSSIAN 94, Rev. B1; Gaussian,
Inc.: Pittsburgh, PA, 1995.

(18) Woodcock, A. E. R.; Poston, T.A Geometrical Study of the
Elementary Catastrophes; Lecture Notes in Mathematics; Springer-Ver-
lag: Berlin, 1974.

(19) Bunker, D. L.; Pattengill, M.J. Chem. Phys.1968, 48, 772.
(20) Hase, W. InDynamics of Molecular Collisions, Part B; Miller W.

H., Ed.; Plenum Press: New York, 1976.
(21) Evleth, E. M.; Kassab, E.Chem. Phys. Lett.1986, 131, 475.
(22) Pepke, E.; Murray, J.; Lyons, J.; Hwu, T.-Z.SciAn: Supercomputer

Computations Research Institute: Florida State University, Tallahassee, FL,
1993.

(23) Luo, X.; Mezey, P. G.Int. J. Quantum Chem.1990, 41, 557.
(24) Luo, X.; Arteca, G. A.; Mezey, P. G.Int. J. Quantum Chem.1992,

42, 459.
(25) Mezey, P. G.Theor. Chim. Acta1995, 92, 333.
(26) Mezey, P. G.Potential Energy Hypersurfaces; Elsevier: Amster-

dam, 1987.

Figure 4. Representation of the NH3BH3 dissociation. (A) Fold
catastrophe creating a second repellor and a saddle point of index 2;
note that the green disynaptic domain becomes monosynaptic and red.
(B and C) Boron core rearrangement. This figure, presented here in
black and white, is available in color on the World Wide Web.
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